

μ PD78011H, 78012H, 78013H, 78014H

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78011H, 78012H, 78013H, and 78014H are the products in the μ PD78014H subseries within the 78K/0 series. Compared with the older μ PD78018F subseries, this subseries reduces the EMI (Electro Magnetic Interface) noise generated from the microcontroller.

Functions are described in detail in the following User's Manual, which should be read when carring out design work.

 μ PD78014H Subseries User's Manual: Planned to publish 78K/0 Series User's Manual – Instruction: IEU-1372

FEATURES

- · Low EMI noise model
- Large on-chip ROM & RAM

Item	Program	Data M	lemory			
Product Name	Memory (ROM)	Internal High- Speed RAM	Internal Buffer RAM	Package		
μPD78011H	8K bytes	512 bytes	32 bytes	64-pin plastic shrink DIP (750 mil)		
μPD78012H	16K bytes	1]	• 64-pin plastic QFP (14 × 14 mm)		
μPD78013H	24K bytes	1024 bytes		• 64-pin plastic LQFP (12 × 12 mm)		
μPD78014H	32K bytes					

· External memory expansion space : 64K bytes

Instruction execution time can be varied from high-speed (0.4 μs) to ultra-low-speed (122 μs)

• I/O ports: 53 (N-ch open-drain: 4)

• 8-bit resolution A/D converter: 8 channels

• Serial interface : 2 channels

• Timer: 5 channels

Supply voltage: Vpp = 1.8 to 5.5 V

APPLICATION FIELD

Cellular phone, pager, VCR, audio, camera, home appliances, etc.

The information in this document is subject to change without notice.

Document No. U11898EJ1V0DS00 (1st edition) Date Published January 1997 N Printed in Japan

■ 6427525 0085965 284 **■**

© NEC Corporation 1997

ORDERING INFORMATION

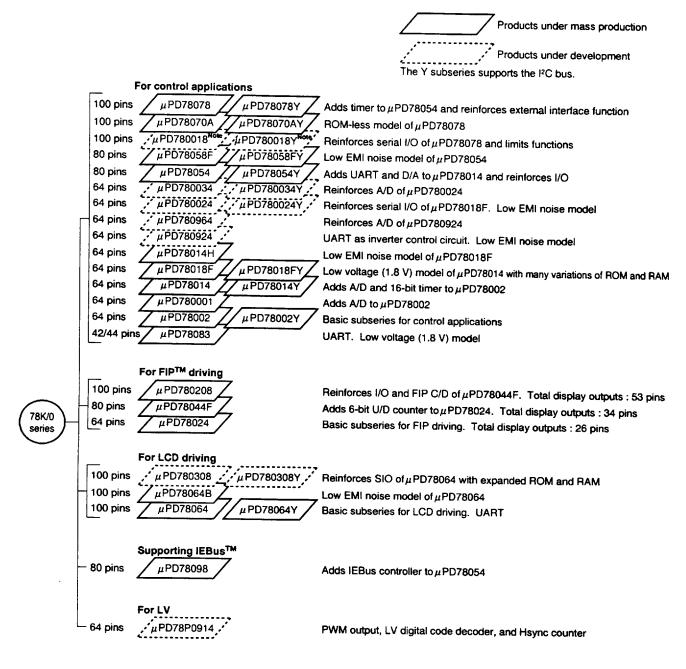
Part Number	Package
μPD78011HCW-xxx	64-pin plastic shrink DIP (750 mil)
μPD78011HGC-xxx-AB8	64-pin plastic QFP (14 × 14 mm)
μPD78011HGK-×××-8A8	64-pin plastic LQFP (12 × 12 mm)
μPD78012HCW-×××	64-pin plastic shrink DIP (750 mil)
μPD78012HGC-xxx-AB8	64-pin plastic QFP (14 × 14 mm)
μPD78012HGK-xxx-8A8	64-pin plastic LQFP (12 × 12 mm)
μPD78013HCW-×××	64-pin plastic shrink DIP (750 mil)
μPD78013HGC-xxx-AB8	64-pin plastic QFP (14 × 14 mm)
μPD78013HGK-xxx-8A8	64-pin plastic LQFP (12 × 12 mm)
μPD78014HCW-×××	64-pin plastic shrink DIP (750 mil)
μPD78014HGC-xxx-AB8	64-pin plastic QFP (14 × 14 mm)
μPD78014HGK-xxx-8A8	64-pin plastic LQFP (12 × 12 mm)

Remark xxx indicates ROM code No.

The following supersedes any statement which may be found elsewhere in this document purporting to address the subjects of quality, reliability or suitability of any devices listed in this document for applications other than as noted.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC Electronics Inc. (NECEL). The information in this document is subject to change without notice. ALL DEVICES SOLD BY NECEL ARE COVERED BY THE (NECEL). The information in this document is subject to change without notice. ALL DEVICES SOLD BY NECEL ARE COVERED BY THE PROVISIONS APPEARING IN NECEL TERMS AND CONDITIONS OF SALE ONLY, INCLUDING THE LIMITATION OF LIABILITY, WARRANTY, AND PATENT PROVISIONS. NECEL makes no warranty, express, statutory, implied or by description, regarding information set forth herein or regarding the freedom of the described devices from patent infringement. NECEL assumes no responsibility for any errors that may appear in this document. NECEL makes no commitments to update or to keep current information contained in this document. The devices listed in this document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. "Standard" quality grade devices are recommended for computers, office equipment, communication equipment, test and measurement equipment, machine tools, industrial robots, audio and visual computers, office equipment, communication equipment, test and measurement equipment, traffic control systems, anti-disaster and anti-crime equipment, and other consumer products. For automotive and transportation equipment, traffic control systems, anti-disaster and anti-crime equipment, it is recommended that the customer contact the responsible NECEL salesperson to determine the reliability requirements for any systems, it is recommended that the customer contact the responsible NECEL salesperson to determine the reliability requirements for any systems, it is recommended that the customer contact the responsible NECEL salesperson to determine the reliability requirements for any systems, it is recommended that the customer contac

For literature, call toll-free 7 a.m. to 6 p.m. Pacific time: 1-800-366-9782 or FAX your request to: 1-800-729-9288


2

■ 6427525 0085966 110 ■

DEVELOPMENT OF 78K/0 SERIES

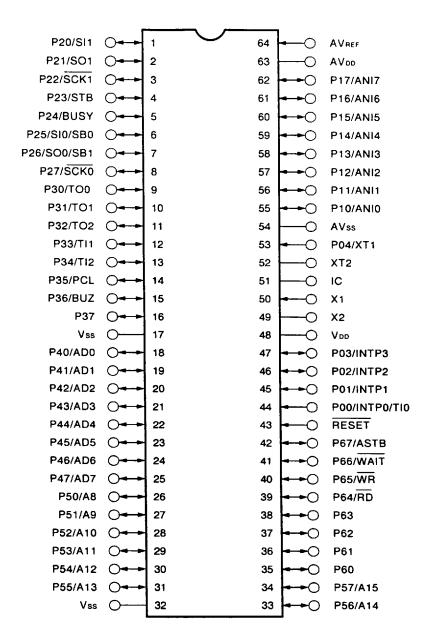
The following products are available in the 78K/0 series. The parts numbers enclosed in a frame are subseries names.

Note Under planning

The major differences between the respective subseries are shown below.

	Functions	ROM		Tir	ner			10-bit	8-bit	Serial	1/0	V _{DD}	External
Subseries		Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A	Interface		Value	Expansion
For	μPD78078	32 K-60 K	4ch	1ch	1ch	1ch	8ch	_	2ch	3ch (UART: 1ch)	88 pins	1.8 V	0
Control	μPD78070A	-									61 pins	2.7 V	
	μPD780018	48 K-60 K								2chs	88 pins		
								·		(time-division			
										3-wire: 1 ch)			
	μPD78058F		2ch						2ch	3ch (UART: 1ch)	69 pins		
	μPD78054	16 K-60 K										2.0 V	
	μPD780034	8 K-32 K					-	8ch	_	3chs	51 pins	1.8 V	
	μPD780024						8ch	-		(UART: 1 ch,			
										time-division			
										3-wire: 1 ch)			
	μPD780964		3ch	Note	_			8ch		2ch (UART: 2ch)	47 pins	2.7 V	
	μPD780924						8ch	—					
	μPD78014H		2ch	1ch	1ch	1	ł			2ch	53 pins	1.8 V	
	μPD78018F	8 K-60 K							,				
	μPD78014	8 K-32 K					ŀ				<u></u>	2.7 V	
	μPD780001	8 K		_]		1ch	39 pins		
	μPD78002	8 K-16 K			1ch]	ŀ		53 pins		0
	μPD78083						8ch			1ch (UART: 1ch)		1.8 V	
For FIP	μPD780208	32 K-60 K	2ch	1ch	1ch	1ch	8ch	_	—	2ch	74 pins	2.7 V	_
driving	μPD78044F	16 K-40 K		ļ]						68 pins		
	μPD78024	24 K-32 K									54 pins		
For LCD	μPD780308	48 K-60 K	2ch	1ch	1ch	1ch	8ch	_	—	3ch	57 pins	1.8 V	_
driving				ŀ		ļ				(time-division			
										UART: 1 ch)	1		4
	μPD78064B	32 K	1							2ch (UART: 1ch)		2.0 V	
	μPD78064	16 K-32 K					<u> </u>	ļ					
IEBus	μPD78098	32 K-60 K	2ch	1ch	1ch	1ch	8ch	-	2ch	3ch (UART: 1ch)	69 pins	2.7 V	0
support													
For LV	μPD78P0914	32 K	6ch	-	_	1ch	8ch	_		2ch	54 pins	4.5 V	0

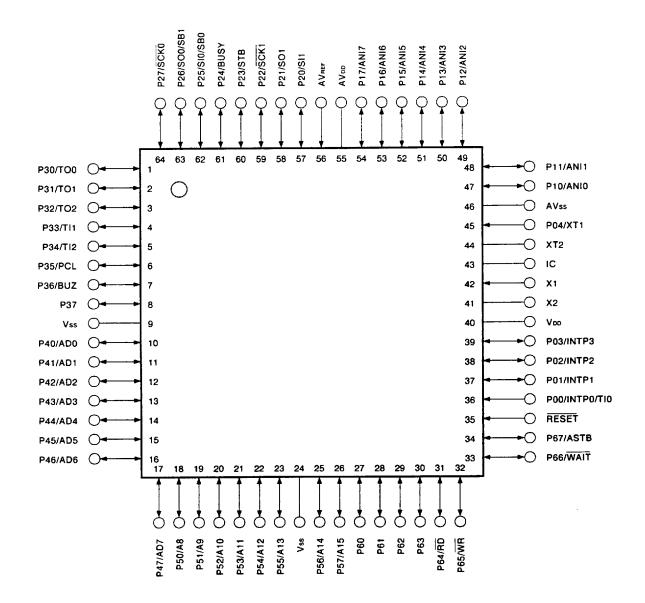
Note 10-bit timer: 1 channel


OVERVIEW OF FUNCTION

Product Na	Item	μPD78011H	μPD78012H	μPD78013H	μPD78014H			
	ROM	8K bytes	16K bytes	24K bytes	32K bytes			
Internal	High-speed RAM		bytes		bytes			
memory	Buffer RAM	32 bytes						
Memory sp	pace	64K bytes						
General-pu	rpose registers	8 bits × 32 registers (8 b	its × 8 registers × 4 banks	s)				
Instruction	cycle	On-chip instruction exec	ution time cycle modificati	on function				
clo	nen main system ock selected	0.4 μs/0.8 μs/1.6 μs/3.2	μs/6.4 μs (at 10.0 MHz op	peration)				
1	nen subsystem ock selected	122 μs (at 32.768 kHz o	peration)					
Instruction	set		8 bits × 8 bits,16 bits ÷ 8 l eset, test, boolean operati					
I/O ports		Total						
A/D conve	rter	8-bit resolution × 8 cha Operable over a wide p	nnels power supply voltage rang	e: AV _{DD} = 1.8 to 5.5 V				
Serial inter	face	3-wire serial I/O/SBI /2-wire serial I/O mode selectable: 1 channel 3-wire serial I/O mode (on-chip max. 32 bytes automatic data transmit/receive function): 1 channel						
Timer		16-bit timer/event count 8-bit timer/event count Watch timer Watchdog timer						
Timer outp	ut	3 (14-bit PWM output ×	1)					
Clock outp	ut	39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz (at main system clock: 10.0 MHz operation), 32.768 kHz (at subsystem clock: 32.768 kHz operation)						
Buzzer out	put	2.4 kHz, 4.9 kHz, 9.8 kH	z (at main system clock:	10.0 MHz operation)				
Vectored	Maskable	Internal : 8, External :	4					
interrupt	Non-maskable	Internal : 1						
sources	Software	1						
Test input		Internal: 1, External:	1					
Supply volt	age	V _{DD} = 1.8 to 5.5 V						
Operating a		T _A = -40 to +85°C						
Package		64-pin plastic shrink Di 64-pin plastic QFP (14 64-pin plastic LQFP (1)	× 14 mm)					

TABLE OF CONTENTS

1.	PIN CONFIGURATION (Top View)	′
2.	BLOCK DIAGRAM	10
3.	PIN FUNCTIONS	11 12
4.	MEMORY SPACE	16
5.	PERIPHEL HARDWARE FUNCTION FEATURES 5.1 PORTS	17 18 19 21 21 22
6.	INTERRUPT FUNCTIONS AND TEST FUNCTIONS	25
7.	EXTERNAL DEVICE EXPANTION FUNCTIONS	29
8.	STANDBY FUNCTIONS	29
9.	RESET FUNCTIONS	29
10.	INSTRUCTION SET	30
11.	ELECTRICAL SPECIFICATIONS	33
12.	PACKAGE DRAWINGS	57
13.	RECOMMENDED SOLDERING CONDITIONS	60
API	PENDIX A. DEVELOPMENT TOOLS	62
4 DI	DENDLY D. DELATED DOCUMENTS	64


- 1. PIN CONFIGURATION (Top View)
 - 64-Pin Plastic Shrink DIP (750 mil) μ PD78011HCW-xxx, 78012HCW-xxx, 78013HCW-xxx, 78014HCW-xxx

- Cautions 1. Always connect the IC (Internally Connected) pin to Vss directly.
 - 2. The AV_{DD} pin is multiplexed with an A/D converter power pin and a port power pin. In an application where the noise generated from the microcontroller must be reduced, connect the AV_{DD} pin to a power supply of the same voltage as V_{DD}.
 - The AVss pin is multiplexed with an A/D converter ground pin and a port ground pin. In an application where the noise generated from the microcontroller must be reduced, connect AVss pin to a ground line separate from Vss.

■ 6427525 0085971 588 **■**

- 64-Pin Plastic QFP (14 × 14 mm) μPD78011HGC-xxx-AB8, 78012HGC-xxx-AB8, 78013HGC-xxx-AB8, 78014HGC-xxx-AB8
- 64-Pin Plastic LQFP (12 × 12 mm) μPD78011HGK-×××-8A8, 78012HGK-×××-8A8, 78013HGK-×××-8A8, 78014HGK-×××-8A8

Cautions 1. Always connect the IC (Internally Connected) pin to Vss directly.

- 2. The AVDD pin is multiplexed with an A/D converter power pin and a port power pin. In an application where the noise generated from the microcontroller must be reduced, connect the AVDD pin to a power supply of the same voltage as VDD.
- 3. The AVss pin is multiplexed with an A/D converter ground pin and a port ground pin. In an application where the noise generated from the microcontroller must be reduced, connect AVss pin to a ground line separate from Vss.

8

■ 6427525 0085972 414 ■

A8-A15 : Address Bus
AD0-AD7 : Address/Data Bus
ANI0-ANI7 : Analog Input
ASTB : Address Strobe
AVod : Analog Power Supply
AVREF : Analog Reference Voltage

AVss : Analog Ground

BUSY : Busy

BUZ : Buzzer Clock
IC : Internally Connected
INTP0-INTP3 : Interrupt from Peripherals

P00-P04 : Port 0 P10-P17 : Port 1 P20-P27 : Port 2 P30-P37 : Port 3 P40-P47 : Port 4

P50-P57 : Port 5

P60-P67 : Port 6

PCL : Programmable Clock

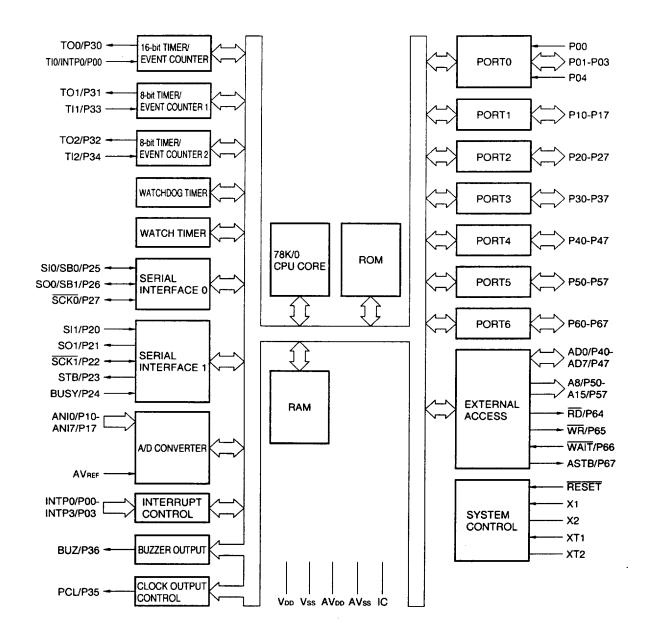
 RD
 : Read Strobe

 RESET
 : Reset

 SB0, SB1
 : Serial Bus

 SCK0, SCK1
 : Serial Clock

 SI0, SI1
 : Serial Input


SO0, SO1 : Serial Output
STB : Strobe
TI0-TI2 : Timer Input
TO0-TO2 : Timer Output
Vob : Power Supply

Vss : Ground : Wait

WR : Write Strobe

X1, X2 : Crystal (Main System Clock)
XT1, XT2 : Crystal (Subsystem Clock)

2. BLOCK DIAGRAM

Remark Internal ROM & RAM capacity varies depending on the product.

3. PIN FUNCTIONS

3.1 PORT PINS (1/2)

Pin Name	1/0		Function	On Reset	Dual- Function Pin
P00	Input	Port 0	input only		INTP0/TI0
P01	Input/	5-bit I/O port	Input/output can be specified bit-wise.	Input	INTP1
P02	output		When used as an input port, on-chip pull-up resistor can be used by software.		INTP2
P03			resistor can be used by software.		INTP3
P04Note 1	Input	1	Input only	Input	XT1
P10 to P17	Input/ output	Port 1 8-bit input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used by software. Note 2		Input	ANIO to ANI7
P20	Input/	Port 2		Input	SII
P21	output	8-bit input/outp	•		SO1
P22	1	1 ' '	be specified bit-wise. n input port, on-chip pull-up resistor can be used		SCK1
P23	1	by software.			STB
P24					BUSY
P25					SI0/SB0
P26]				SO0/SB1
P27	1				SCKO
P30	Input/	Port 3		Input	TOO
P31	output	8-bit input/outp	ut port. n be specified in 1-bit units.		TO1
P32		1 -	an input port, on-chip pull-up resistor can be used		TO2
P33		by software.			TI1
P34					TI2
P35					PCL
P36	<u> </u>				BUZ
P37					_
P40 to P47	input/ output	When used as by software.	ut port. n be specified in 8-bit unit. an input port, on-chip pull-up resistor can be used (KRIF) is set to 1 by falling edge detection.	Input	AD0 to AD7

- Notes 1. When using the P04/XT1 pin as an input port pin, set bit 6 (FRC) of the processor clock control register (PCC) to 1 (do not use the internal feedback resistor of the subsystem clock oscillation circuit).
 - 2. When using the P10/ANI0 through P17/ANI7 pins as the analog input pins of the A/D converter, the internal pull-up resistors are automatically not used.

3.1 PORT PINS (2/2)

Pin Name	1/0	F	unction	On Reset	Dual- Function Pin
P50 to P57	Input/ output	Port 5 8-bit input/output port. LED can be driven directly. Input/output can be specified bi When used as an input port, or software.	Input	A8 to A15	
P60	Input/	Port 6	N-ch open-drain input/output port.	Input	
P61	output	8-bit input/output port.	On-chip pull-up resistor can be		
P62]	Input/output can be specified bit-wise.	specified by mask option.		
P63		Dit-Wise.	LED can be driven directly.		
P64			When used as an input port, on-chip		RD
P65			pull-up resistor can be used by soft-		WR
P66]		ware.		WAIT
P67]				ASTB

Caution Do not manipulate the pins multiplexed with a port pin as follows during A/D conversion; otherwise, the rated total error during A/D conversion may not be satisfied.

- <1> Rewriting the contents of the output latch when the pin is used as an output port pin.
- <2> Changing the output level of the pin used as an output pin even when the pin is not used as a port pin.

3.2 OTHER PORTS (1/2)

Pin Name	1/0	Function	On Reset	Dual- Function Pin
INTP0	Input	External interrupt request input by which the effective edge (rising	Input	P00/TI0
INTP1		edge, falling edge, or both rising edge and falling edge) can be		P01
INTP2]	specified.		P02
INTP3]	Falling edge detection external interrupt request input.		P03
SIO	Input	Serial interface serial data input.	input	P25/SB0
SI1	1		 	P20
SO0	Output	Serial interface serial data output.	Input	P26/SB1
SO1	1			P21
SB0	Input	Serial interface serial data input/output.	Input	P25/SI0
SB1	/output			P26/SO0
SCK0	Input	Serial interface serial clock input/output.	Input	P27
SCK1	/output			P22
STB	Output	Serial interface automatic transmit/receive strobe output.	Input	P23
BUSY	Input	Serial interface automatic transmit/receive busy input.	Input	P24

3.2 OTHER PORTS (2/2)

Pin Name	1/0	Function	On Reset	Dual- Function Pin
TiO	Input	External count clock input to 16-bit timer (TM0).	Input	P00/INTP0
TI1]	External count clock input to 8-bit timer (TM1).		P33
TI2		External count clock input to 8-bit timer (TM2).		P34
TO0	Output	16-bit timer (TM0) output (multiplexed with 14-bit PWM output).	Input	P30
TO1		8-bit timer (TM1) output.		P31
TO2		8-bit timer (TM2) output.		P32
PCL	Output	Clock output (for main system clock, subsystem clock trimming).	Input	P35
BUZ	Output	Buzzer output.	Input	P36
AD0 to AD7	Input /output	Low-order address/data bus at external memory expansion.	Input	P40 to P47
A8 to A15	Output	High-order address bus at external memory expansion.	Input	P50 to P57
RD	Output	External memory read operation strobe signal output.	Input	P64
WR		External memory write operation strobe signal output.		P65
WAIT	Input	Wait insertion at external memory access.	Input	P66
ASTB	Output	Strobe output which latches the address information output at port 4 and port 5 to access external memory.	Input	P67
ANIO to ANI7	Input	A/D converter analog input.	Input	P10 to P17
AVREF	Input	A/D converter reference voltage input.		_
AVDD		A/D converter analog power supply (multiplexed with a port power pin).	-	_
AVss		A/D converter ground potential (multiplexed with a port ground pin).	-	_
RESET	Input	System reset input.	_	_
X1	Input	Main system clock oscillation crystal connection.	_	_
X2				_
XT1	Input	Subsystem clock oscillation crystal connection.	Input	P04
XT2	_		_	_
Voo	_	Positive power supply (except port pins).	_	
Vss	_	Ground potential (except port pins).		_
IC	_	Internal connection. Connected to Vss directly.		_

Cautions 1. The AVDD pin is multiplexed with an A/D converter power pin and a port power pin. In an application where the noise generated from the microcontroller must be reduced, connect the AVDD pin to a power supply of the same voltage as VDD.

2. The AVss pin is multiplexed with an A/D converter ground pin and a port ground pin. In an application where the noise generated from the microcontroller must be reduced, connect AVss pin to a ground line separate from Vss.

3.3 PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, see Figure 3-1.

Table 3-1. Input/Output Circuit Type of Each Pin

Pin Name	Input/output Circuit Type	I/O	Recommended Connection when Not Used
P00/INTP0/TI0	2	Input	Connected to Vss.
P01/INTP1	8-D	Input/output	Individually connected to Vss via resistor.
P02/INTP2			
P03/INTP3			
P04/XT1	16	Input	Connected to Voo or Vss.
P10/ANI0 to P17/ANI7	11-C	Input/output	Individually connected to VDD or Vss via resisitor.
P20/SI1	8-D		
P21/SO1	5-J		
P22/SCK1	8-D		
P23/STB	5-J		
P24/BUSY	8-D		
P25/S10/SB0	10-C		
P26/SO0/SB1			
P27/SCK0			
P30/TO0	5-J		
P31/TO1			
P32/TO2			
P33/TI1	8-D		
P34/TI2			
P35/PCL	5-J		
P36/BUZ			
P37	7		
P40/AD0 to P47/AD7	5-O		Individually connected to Voo via resistor.
P50/A8 to P57/A15	5-J		Individually connected to Voo or Vss via resistor.
P60 to P63	13-I		Individually connected to Voo via resistor.
P64/RD	5-J		Individually connected to Voo or Vss via resistor.
P65/WR			
P66/WAIT	7		
P67/ASTB	7		
RESET	2	Input	-
XT2	16		Leave open.
AVREF	_		Connected to Vss.
AVDD	1		Connected to Vpp.
AVss	7		Connected to Vss .
IC	7		Connected to Vss directly.

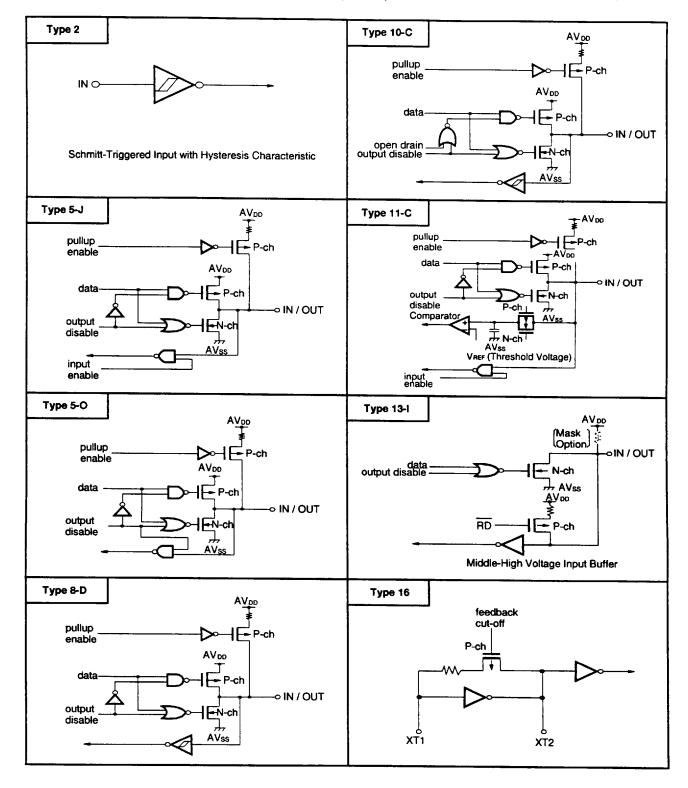


Figure 3-1. Pin Input/Output Circuits

4. MEMORY SPACE

The memory map of the μ PD78011H, 78012H, 78013H, 78014H is shown in Figure 4-1.

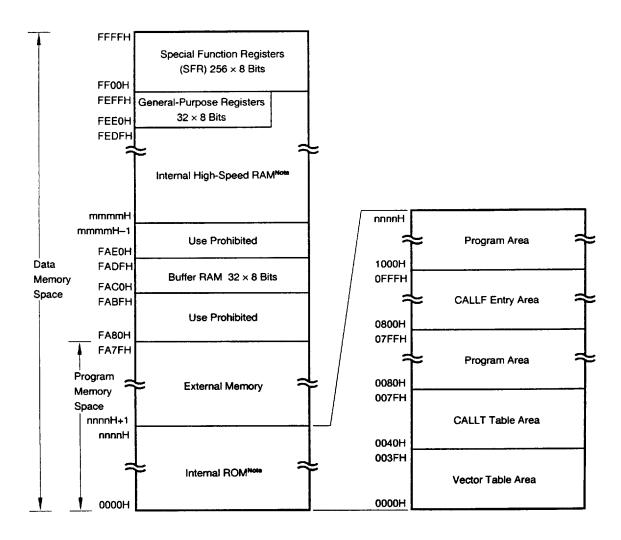


Figure 4-1. Memory Map

Note Internal ROM and internal high-speed RAM capacities vary depending on the product (see the table below).

Product Name	Intenal ROM End Address nnnnH	Internal High-Speed RAM Start Address mmmmH
μPD78011H	1FFFH	FD00H
μPD78012H	3FFFH	
μPD78013H	5FFFH	FB00H
μPD78014H	7FFFH	

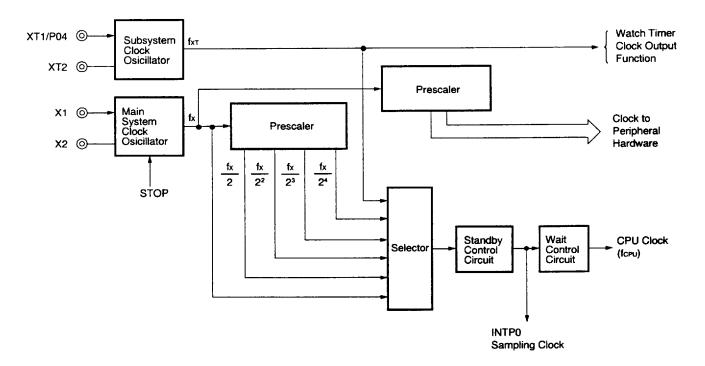
5. PERIPHERAL HARDWARE FUNCTION FEATURES

5.1 PORTS

The I/O port has the following three types

CMOS input (P00, P04)
 CMOS input/output (P01 to P03, port 1 to port 5, P64 to P67)
 N-ch open-drain input/output(15V withstand voltage) (P60 to P63)
 Total

Table 5-1. Functions of Ports


Port Name	Pin Name	Function	
Port 0	P00, P04	Dedicated Input port	
	P01 to P03	Input/output ports. Input/output can be specified bit-wise.	
		When used as an input port, pull-up resistor can be used by software.	
Port 1	P10 to P17	Input/output ports. Input/output can be specified bit-wise.	
	1	When used as an input port, pull-up resistor can be used by software.	
Port 2	P20 to P27	Input/output ports. Input/output can be specified bit-wise.	
		When used as an input port, pull-up resistor can be used by software.	
Port 3	P30 to P37	Input/output ports. Input/output can be specified bit-wise.	
		When used as an input port, pull-up resistor can be used by software.	
Port 4	P40 to P47	Input/output ports. Input/output can be specified in 8-bit units.	
		When used as an input port, pull-up resistor can be used by software.	
		Test input flag (KRIF) is set to 1 by falling edge detection.	
Port 5	P50 to P57	Input/output ports. Input/output can be specified bit-wise.	
		When used as an input port, pull-up resistor can be used by software.	
	<u> </u>	LED can be driven directly.	
Port 6	P60 to P63	N-ch open-drain input/output port. Input/output can be specified bit-wise.	
		On-chip pull-up resistor can be specified by mask option.	
		LED can be driven directly.	
	P64 to P67	Input/output ports. Input/output can be specified bit-wise.	
		When used as an input port, pull-up resistor can be used by software.	

5.2 CLOCK GENERATOR

There are two types of clock generator: main system clock and subsystem clock. The instruction exection time can be changed.

- 0.4μ s/ 0.8μ s/ 1.6μ s/ 3.2μ s/ 6.4μ s (Main system clock: at 10.0 MHz operation)
- 122μs (Subsystem clock: at 32.768 KHz operation)

Figure 5-1. Clock Generator Block Diagram

5.3 TIMER/EVENT COUNTER

The following five channels are incorporated in the timer/event counter.

16-bit timer/event counter

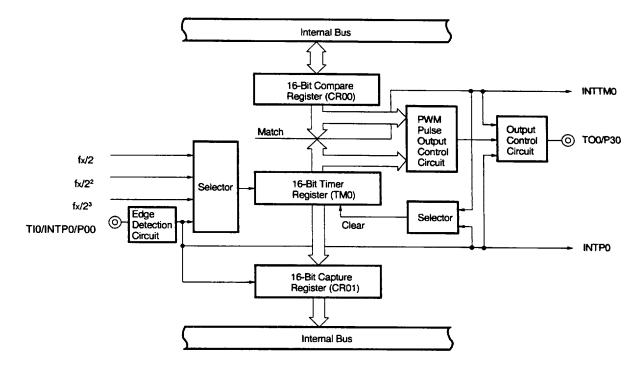
: 1 channel

8-bit timer/event counter

: 2 channels

· Watch timer

: 1 channel

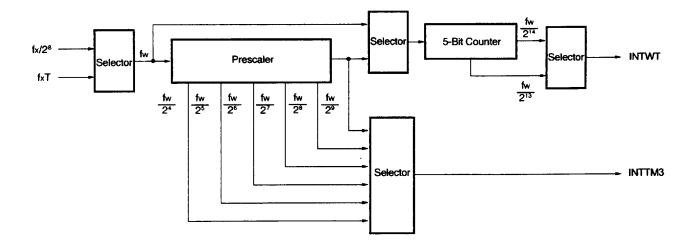

Watchdog timer

: 1 channel

Table 5-2. Types and Functions of Timer/Event Counter

		16-bit Timer/Event Counter	8-bit Timer/Event Counter	Watch Timer	Watchdog Timer
Туре	Interval timer	1 channel	2 channels	1 channel	1 channel
	Externanal event counter	1 channel	2 channels	_	_
Functions	Timer output	1 output	2 outputs	-	-
-	PWM output	1 output	-	_	_
	Pulse width mesurement	1 input	_	_	_
	Sqare wave output	1 output	2 outputs	_	-
	Interrupt request	2	2	1	1
	Test input	_	-	1	_

Figure 5-2. 16-bit Timer/Enent Counter Block Diagram



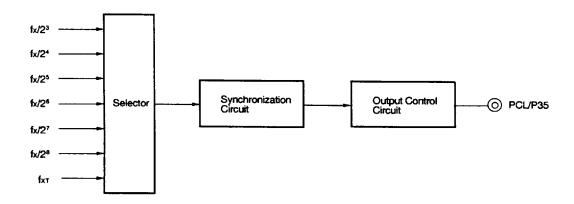
■ 6427525 0085983 2TT **■**

Internal Bus - INTIM1 8-Bit Compare Register (CR10) 8-Bit Compare Register (CR20) Output ⊙ TO2/P32 Match' Selector Control Circuit - INTTM2 fx/22-fx/210 8-Bit Timer Selector fx/212 Register 1 (TM1 8-Bit Timer Selector TI1/P33 🔘 Register 2 (TM2) Clear Clear $f_x/2^2 - f_x/2^{10}$ Selector fx/212 Selector TI2/P34 (0) Output Control Circuit Internal Bus

Figure 5-3. 8-bit Timer/Enent Counter Block Diagram

Figure 5-4. Watch Timer Block Diagram

Prescaler fx ſх INTWDT 25 26 27 28 29 210 212 Maskable Interrupt Request Control Circuit Selector 8-Bit Counter RESET INTWDT Non-Maskable Interrupt Request

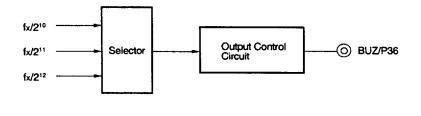

Figure 5-5. Watchdog Timer Block Diagram

5.4 CLOCK OUTPUT CONTROL CIRCUIT

The clock with the following frequencies can be output for clock output.

- 39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz/1.25 MHz (Main system clock: at 10.0 MHz operation)
- 32.768 kHz (Subsystem clock: at 32.768 kHz operation)

Figure 5-6. Clock Output Control Block Diagram



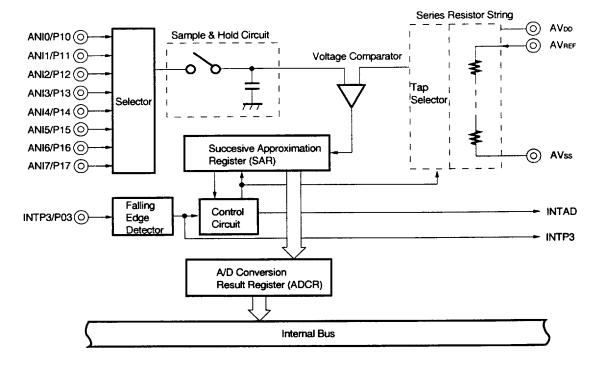
5.5 BUZZER OUTPUT CONTROL CIRCUIT

The clock with the following frequencies can be output for buzzer output.

• 2.4 kHz/4.9 kHz/9.8 kHz (Main system clock: at 10.0 MHz operation)

Figure 5-7. Buzzer Output Control Block Diagram

427525 0085985 072


21

5.6 A/D CONVERTER

The A/D converter has on-chip eight 8-bit resolution channels. There are the following two method to start A/D conversion.

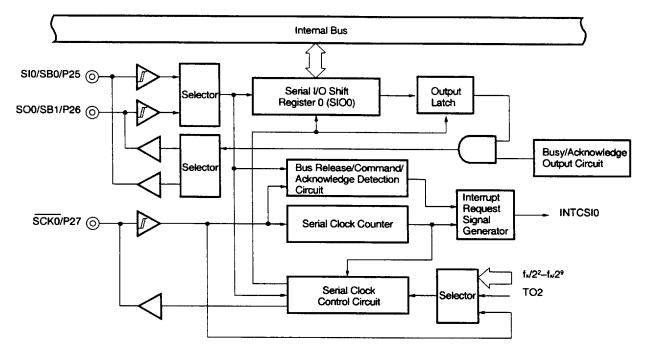
- · Hardware starting
- · Software starting

Figure 5-8. A/D Converter Block Diagram

Caution Do not manipulate the pins multiplexed with a port pin (refer to 3.1 PORT PINS) during A/D conversion; otherwise, the rated total error during A/D conversion may not be satisfied.

- <1> Rewriting the contents of the output latch when the pin is used as an output port pin.
- <2> Changing the output level of the pin used as an output pin even when the pin is not used as a port pin.

5.7 SERIAL INTERFACES


There are two on-chip clocked serial interfaces as follows.

- · Serial Interface channel 0
- · Serial Interface channel 1

Table 5-3. Type and Function of Serial Interface

Function	Serial Interface Channel 0	Serial Interface Channel 1
3-wire serial I/O mode	O (MSB/LSB-first switchable)	O (MSB/LSB-first switchable)
3-wire serial I/O mode with automatic data transmit/ receive function	-	O (MSB/LSB-first switchable)
SBI (Serial Bus Interface) mode	O (MSB-first)	-
2-wire serial I/O mode	O (MSB-first)	-

Figure 5-9. Serial Interface Channel 0 Block Diagram

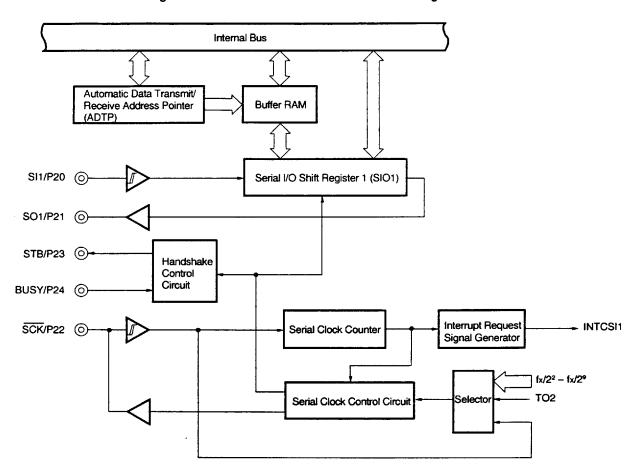


Figure 5-10. Serial Interface Channel 1 Block Diagram

6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS

6.1 INTERRUPT FUNCTIONS

There are the 14 interrupt sources of 3 different kind as shown below.

· Non-maskable

: 1

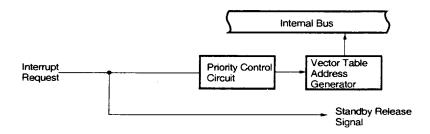
· Maskable

: 12

· Software

: 1

Table 6-1. Interrupt Source List


	Default		Interrupt Source	internal/	Vector Table	Basic
Interrupt Type	Priority Note 1	Name	Trigger	External	Address	Configuratin Type Note 2
Non-maskable	4	INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006Н	(C)
	2	INTP1			0008H	(D)
3 4	3	INTP2			000AH	
	4	INTP3			000CH	
	5 INTCSIO	Serial interface channel 0 transfer end	Internal	000EH	(B)	
	6	INTCSI1	Serial interface channel 1 transfer end	1	0010H	
	7	INTTM3	Reference time interval signal from watch timer		0012H	
	8	INTTMO	16 bit timer/event counter match signal generation		0014H	
	9	INTTM1	8-bit timer/event counter 1 match signal generation		0016H	
	10	INTTM2	8-bit timer/event counter 2 match signal generation		0018H	
	11	INTAD	A/D converter conversion end	1	001AH	
Software		BRK	BRK instruction execution	_	003EH	(E)

Notes 1. The default pririty is the priority applicable when more than one maskable interrupt is generated. 0 is the highest priority and 11, the lowest.

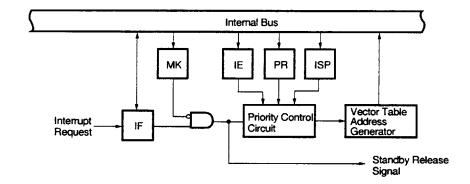

2. Basic configuration types (A) to (E) correspond to (A) to (E) on the next page.

Figure 6-1. Basic Interrupt Function Configuration (1/2)

(A) Internal Non-Maskable Interrupt

(B) Internal Maskable Interrupt

(C) External Maskable Interrupt (INTP0)

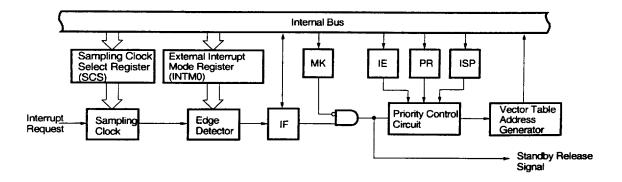
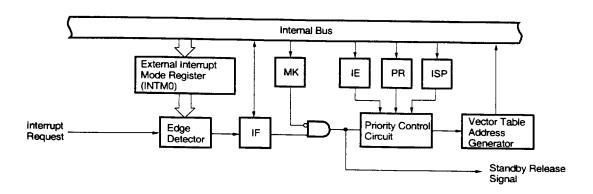
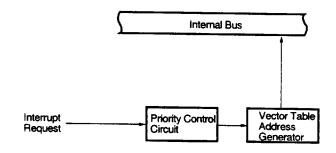




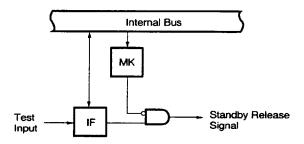
Figure 6-1. Basic Interrupt Function Configuration (2/2)

(D) External Maskable Interrupt (Except INTP0)

(E) Software Interrupt

IF : Interrupt request flag
IE : Interrupt enable flag
ISP : In-service priority flag
MK : Interrupt mask flag
PR : Priority spcification flag

■ 6427525 0085991 376 **■**


6.2 TEST FUNCTIONS

There are two test functions as shown in Table 6-2.

Table 6-2. Test Source List

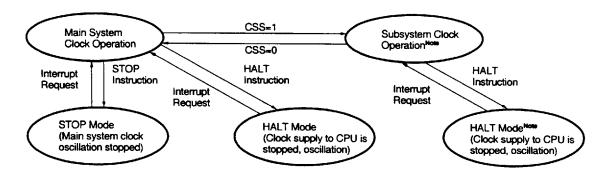
	Test Source	Internal/External		
Name	Trigger	Internal/External		
INTWT	Watch timer overflow	Internal		
INTPT4	Port 4 falling edge detection	External		

Figure 6-2. Test Function Basic Configuration

IF : Test input flagMK : Test mask flag

7. EXTERNAL DEVICE EXPANSION FUNCTIONS

The external device expansion function is used to connect external devices to areas other than the internal ROM, RAM and SFR.


Ports 4 to 6 are used for connection with external devices.

8. STANDBY FUNCTIONS

There are the following two standby functions to reduce the current dissipation.

- HALT mode : The CPU operating clock is stopped. The average consumption current can be reduced by intermittent operation in combination with the normal operating mode.
- STOP mode : The main system clock oscillation is stopped. The whole operation by the main system clock is stopped, so that the system operates withultra-low power consumption using only the subsystem clock.

Figure 8-1. Standby Functions

Note The power consumption can be reduced by stopping the main system clock. When the CPU is operating on the subsystem clock, set the MCC to stop the main system clock. The STOP instruction cannot be used.

Caution When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program by the program.

9. RESET FUNCTIONS

There are the following two reset methods.

- External reset input by RESET pin.
- · Internal reset by watchdog timer runaway time detection.

10. INSTRUCTION SET

(1) 8-Bit Instruction

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

2nd Operand 1st Operand	#byte	Α	_r Note	sfr	saddr	!addr16	PSW	(DE)	(HL)	[HL+byte] [HL+B] [HL+C]	\$adder16	1	None
Α	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
r1											DBNZ		
sfr	MOV	MOV											
sadder	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!adder16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL+byte] [HL+B] [HL+C]		MOV											
Х												MULU	
С												MUVID	

Note Except r=A

30

6427525 0085994 085

(2) 16-Bit Instruction

MOVW, XCHW ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

2nd Operand 1st Operand	#byte	AX	rp Note	saddrp	!addr16	SP	None	
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVWNate						INCW, DECW
sfrp	MOVW	MOVW						
sadderp	MOVW	MOVW						
!adder16		MOVW						
SP	MOVW	MOVW						

Note Only when rp=BC, DE, HL.

(3) Bit Manipulation Instruction

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd Operand 1st Operand	A.bit	sfr.bit	saddr.bit	PWS.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
CY	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

■ 6427525 0085995 Tll ■

(4) Call Instruction/Branch Instruction

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

2nd Operand 1st Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL, BR	CALLF	CALLT	BR, BC, BNC, BZ, BNZ
Compound instruction					BT, BF, BTCLR, DBNZ

(5) Other Instruction

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

11. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (TA = 25 °C)

Parameter	Symbol	Test Conditions		Rating	Unit
Supply voltage	Voo			-0.3 to + 7.0	V
	AVDD			-0.3 to V _{DD} + 0.3	V
	AVREF			-0.3 to Vpp + 0.3	V
	AVss			-0.3 to + 0.3	V
Input voltage	Vis	P00 to P04, P10 to P17, P20 to P40 toP47, P50 to P57, P64 to	4	-0.3 to V _{DD} + 0.3	V
	V ₁₂	P60 to P67	Open-drain	-0.3 to +16	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10 to P17	Analog input pin AVss -0.3 to AVREF + 0.3		V
Output		1 pin		-10	mA
current high	Юн	P10 to P17, P20 to P27, P30 to	P37 total	-15	mA
		P01 to P03, P40 to P47, P50 to P5	7, P60 to P67 total	-15	mA
Output current low		1 pin	Peak value	30	mA
current low		- piii	rms	15	mA
		P40 to P47, P50 to P55 total	Peak value	100	mA
			rms	70	mA
	ioi Note	P01 to P03, P56, P57,	Peak value	100	mA
	IOFIGUR	P60 to P67 total	rms	70	mA
		P01 to P03,	Peak value	50	mA
		P64 to P67 total	rms	20	mA
		P10 to P17, P20 to P27, P30 to P37	Peak value	50	mA
		total	rms	20	mA
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	Tetg			-65 to +150	•c

Note rms should be calculated as follows: [rms] = [peak value] $\times \sqrt{\text{duty}}$

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even momentarily. That is, the absolute maximuam ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Capacitance (TA = 25 °C, VDD = VSS = 0 V)

Parameter	Symbol	Test (Conditions	MIN.	TYP.	MAX.	Unit			
Input capacitance	Cin	f = 1 MHz Unmeasure	ed pins returned to 0 V			15	15 pF			
I/O capacitance			P01 to P03, P10 to P17,				_			
		f = 1 MHz Unmeasured	P20 to P27, P30 toP37,			15	рF			
	Cio	pins returned to 0 V	P40 toP47, P50 to P57,							
			P64 to P67							
			P60 to P63			20	pF			

Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.

Main System Clock Oscillation Circuit Characteristics (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit	
Ceramic	ly, ye, el	Oscillator	2.7 V ≤ Vpp ≤ 5.5 V	1		10	B.41.4-	
resonator	X1 X2 IC	frequency (fx) Note 1	1.8 V ≤ VDD < 2.7 V	1		5	MHz	
	Oscillation stabilization time Note 2	After Voo reaches oscillator voltage range MIN.			4	ms		
Crystal	Crystal x1 X2 IC	Oscillator frequency (fx) Note 1 Oscillation	2.7 V ≤ V _{DD} ≤ 5.5 V	1		10	MHz ms	
resonator			1.8 V ≤ VDD < 2.7 V	1		5		
	□ C1 □ C2		V _{DD} = 4.5 to 5.5 V	<u> </u>		10		
	<u></u>	stabilization time Note 2				30		
External clock	<u>x1</u> x2	X1 input frequency (fx) Note 1		1.0		10.0	MHz	
Δ μPD74HC	μPD74HCU04	X1 input high/low level width (txн, txι)		45		500	ns	

- Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after reset or STOP mode release.
- Cautions 1. When using the main system clock oscillator, wirinin the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Wiring should be as short as possible.
 - Wiring should not cross other signal lines.
 - Wiring should not be placed close to a varying high current.
 - The potential of the oscillator capacitor ground should be the same as Vss.
 - Do not ground wiring to a ground pattern in which a high current flows.
 - Do not fetch a signal from the oscillator.
 - 2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.

34

■ 6427525 0085998 720 **■**

Subsystem Clock Oscillation Circuit Characteristics ($T_A = -40 \text{ to } +85 \text{ °C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
resonator i	XT1 XT2 IC	Oscillator frequency (fxr) Note 1		32	32.768	35	kHz
	R2 =C3 =C4	Oscillation	Vpp = 4.5 to 5.5 V		1.2	2	s
		stabilization time Note 2				10	3
External clock	XT1 XT2	XT1 input frequency (fxt) Note 1		32		100	kHz
	↓ ▷	XT1 input high/low level width (tхтн, tхть)		5		15	μS

- Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after VDD reaches oscillator voltage MIN.
- Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Wiring should be as short as possible.
 - Wiring should not cross other signal lines.
 - Wiring should not be placed close to a varying high current.
 - The potential of the oscillator capacitor ground should be the same as Vss.
 - Do not ground wiring to a ground pattern in which a high current flows.
 - Do not fetch a signal from the oscillator.
 - The subsystem clock oscillation circuit is a circuit with a low amplification level, more prone to misoperation due to noise than the main system clock.
 Particular care is therefore required with the wiring method when the subsystem clock is used.

■ 6427525 0085999 667 ■

DC Characteristics (T_A = -40 to +85 °C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Input voltage high	Vien	P10-P17, P21, P23, P30-P32, P35-P37, P40-P47, P50-P57.	V ₀₀ = 2.7 to 5.5 V	0.7 VDD		VDD	٧
		P64-67		0.8 V _{DD}		Voo	V
	V _{IH2}	P00-P03, P20, P22, P24-P27, P33,	V _{DD} = 2.7 to 5.5 V	0.8 V _{DD}		Voo	٧
		P34, RESET		0.85 Voo		VDD	V
	VIH3	P60-P63	VDD = 2.7 to 5.5 V	0.7 VDD		15	V
		(N-ch open-drain)		0.8 Vpp		15	٧
	VIH4	X1, X2	Voo = 2.7 to 5.5 V	V _{DD} – 0.5		Voo	V
				V _{DD} - 0.2		Voo	V
	V _{IH5}	XT1/P04, XT2	4.5 V ≤ VDD ≤ 5.5 V	0.8 V _{DD}		Vpp	V
			2.7 V ≤ V _{DD} < 4.5 V	0.9 V _{DD}		Voo	٧
			1.8 V ≤ V _{DD} < 2.7 V Note	0.9 V _{DD}		VDD	V
Input voltage	VIL1	P10-P17, P21, P23, P30-P32, P35-P37, P40-P47, P50-P57.	V _{DD} = 2.7 to 5.5 V	0		0.3 Vpo	٧
IOW		P64-67		0		0.2 VDD	٧
	VIL2	P00-P03, P20, P22, P24-P27, P33,	V _{DD} = 2.7 to 5.5 V	0		0.2 VDD	٧
		P34, RESET		0		0.15 VDD	٧
	V1L3	P60-P63	4.5 V ≤ V _{DD} ≤ 5.5 V	0		0.3 Voo	V
	Ì		2.7 V ≤ V _{DD} < 4.5 V	0		0.2 Voo	٧
				0		0.1 VDD	٧
	VIL4	X1, X2	V _{DD} = 2.7 to 5.5 V	0		0.4	٧
				0		0.2	٧
	VIL5	XT1/P04, XT2	4.5 V ≤ V _{DD} ≤ 5.5 V	0		0.2 VDD	٧
			2.7 V ≤ V _{DO} < 4.5 V	0		0.1 VDD	٧
			$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$ Note	0		0.1 Voo	٧
Output	Vон	VDD = 4.5 to 5.5 V, IOH = -1 mA		Vpp-1.0			٧
voltage high		loн = −100 <i>μ</i> A		Vpp - 0.5			٧
Output	V _{OL1}	P50 to P57, P60 to P63	Vod = 4.5 to 5.5 V,		0.4	2.0	٧
voltage low			lo _L = 15 mA				
		P01 to P03, P10 to P17, P20 to P27	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$			0.4	V
		P30 to P37, P40 to P47, P64 to P67	lot = 1.6 mA				
	Vol2	SB0, SB1, SCK0	Vpp = 4.5 to 5.5 V, open-drain			0.2 VDD	٧
	.,		pulled-up (R = 1 K Ω)				
	Vols	lot = 400 μA				0.5	

Note When using XT1/P04 as P04, input the inverse of P04 to XT2 using an inverter.

Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.

DC Characteristics (T_A = -40 to +85 °C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test Cond	ditions	MIN.	TYP.	MAX.	Unit
Input leakage	Ісінт	VIN = VDD	P00 to P03, P10 to P17,			3	μΑ
current high			P20 to P27, P30 to P37,				
			P40 to P47, P50 to P57,		İ		
			P60 to P67, RESET			:	
	lun2	1	X1, X2, XT1/P04, XT2			20	μΑ
	Ішнз	Vin = 15 V	P60 to P63			80	μА
input leakege	luius	Vin = 0 V	P00 to P03, P10 to P17,			-3	μΑ
current low			P20 to P27, P30 to P37,				
			P40 to P47, P50 to P57,				
			P60 to P67, RESET				
	luc2		X1, X2, XT1/P04, XT2			-20	μΑ
	Luca	1	P60 to P63			_3 Note	μΑ
Output leakage current high	Ісоні	VOUT = VDD				3	μΑ
Output leakage current low	ILOL	Vout = 0 V				-3	μΑ
Mask option pull-up resister	R1	V _{IN} = 0 V, P60 to P63		20	40	90	kΩ
Software	R2	Vin = 0 V, P01 to P03, P10 to P17, P20 to P27, P30 to P37,		15	40	90	kΩ
pull-up resister		P40 to P47, P50 to P57, P60 to P67		<u> </u>	1	1	

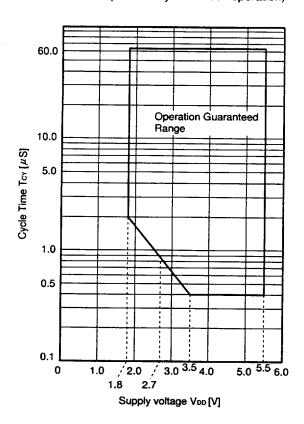
Note For P60-P63, if pull-up resistor is not provided (specifiable by mask option) a low-level input leak current of -200 μ A (MAX.) flows only during the 3 clocks (no-wait time) after an instruction has been executed to read out port 6 (P6) or port mode register 6 (PM6). Outside the period of 3 clocks following execution a read-out instruction, the current is -3μ A (MAX.).

Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.

DC Characteristics ($T_A = -40 \text{ to } +85 \text{ °C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Test Cond	ditions	MIN.	TYP.	MAX.	Unit
Supply	1001	10.00 MHz crystal	VDD = 5.0 V ± 10 % Note 2		9.0	18.0	mA
current Note 1		oscillation operation mode	V _{DD} = 3.0 V ± 10 % Note 3		1.3	2.6	mA
	I _{DD2}	10.00 MHz crystal	VDD = 5.0 V ± 10 % Note 2		2.0	4.0	mA
		oscillation HALT mode	V _{DD} = 3.0 V ± 10 % Note 3		1.0	2.0	mA
	lDD3	32.768 kHz crystal	VDD = 5.0 V ± 10 % Note 3		60	120	μΑ
	i	oscillation operation mode Note 4	V _{DD} = 3.0 V ± 10 % Note 3		35	70	μА
			Voo = 2.0 V ± 10 % Note 4		24	48	μΑ
	IDD4	32.768 kHz crystal	Vop = 5.0 V ± 10 % Note 3		25	50	μA
		oscillation HALT mode	$V_{DD} = 3.0 \text{ V} \pm 10 \% \text{ Note 3}$		5	15	μΑ
			VDD = 2.0 V ± 10 % Note 4		2	10	μΑ
	IDD5	XT1 = V _{DD}	Vpo = 5.0 V ± 10 %		1	30	μA
		STOP mode when using feedback	Voo = 3.0 V ± 10 %		0.5	10	μΑ
		resistor	V _{DD} = 2.0 V ± 10 % Note 4		0.3	10	μΑ
	lone	XT1 = V _{DD}	VDD = 5.0 V ± 10 %		0.1	30	μА
		STOP mode when not using	Voo = 3.0 V ± 10 %		0.05	10	μΑ
		feedback resistor	V _{DD} = 2.0 V ± 10 % Note 4		0.05	10	μΑ

- Notes 1. Current flowing into the Vpp and AVpp pins. However, the current flowing into the A/D converter and internal pull-up resistors is not included.
 - 2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00H)
 - 3. When operating at low-speed mode (when the PCC is set to 04H)
 - 4. When main system clock stopped.


AC Characteristics

(1) Basic Operation ($T_A = -40 \text{ to } +85 \text{ °C}, V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Test Condition	ons	MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	Operating on main system clock	3.5 V ≤ V _{DD} ≤ 5.5 V	0.4		64	μs
(Min. instruction			2.7 V ≤ V _{DD} < 3.5 V	0.8		64	μs
execution time)			1.8 V ≤ V _{DD} < 2.7 V	2.0		64	μs
		Operating on subsystem clock		40	122	125	μs
TI0 input	tтіно	3.5 V ≤ V _{DD} ≤ 5.5 V		2/fsam+0.1 Note			μs
frequency	ttiLo	2.7 V ≤ Vpp < 3.5 V		2/fsam+0.2 Note			μs
		1.8 V ≤ V _{DD} < 2.7 V		2/fsam+0.5 Note			μs
TI1, TI2 input	fītis	V _{DD} = 4.5 to 5.5 V	-	0		4	MHz
frequency				0		275	kHz
TI1, TI2 input	tтінт	Voo = 4.5 to 5.5 V		100			ns
high/low-level width	ttiL1			1.8			μs
Interrupt input	tinth	INTP0	3.5 V ≤ VDD ≤ 5.5 V	2/fsam+0.1 Note			μs
high/low-level	tintl		2.7 V ≤ VDD < 3.5 V	2/fsam+0.2 Note			μs
width			1.8 V ≤ V _{DD} < 2.7 V	2/fsam+0.5 Note			μs
		INTP1-INTP3, KR0-KR7	Voo = 2.7 to 5.5 V	10			μs
				20			μs
RESET low	test	Voo = 2.7 to 5.5 V		10			μs
level width				20			μS

Note In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register, selection of fsam is possible between fX/2^{N+1}, fX/64 and fx/128 (when N= 0 to 4).

Tcy vs Vpb (At main system clock operation)

(2) Read/Write Operation ($T_A = -40 \text{ to } +85 \text{ °C}$, $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.5tcv		ns
Address setup time	tads		0.5tcy-30		ns
Address hold time	tadh		50		ns
Data input time from address	tadd1			(2.5+2n)tcy-50	ns
	tADD2			(3+2n)tcy-100	ns
Data input time from RD↓	tnoo1			(1+2n)tcy-25	ns
	tabb2			(2.5+2n)tcy-100	ns
Read data hold time	tярн		0		ns
RD low-level width	t _{RDL1}		(1.5+2n)tcy-20		ns
	tRDL2		(2.5+2n) tcy-20		ns
WAIT↓ input time from RD↓	trowti			0.5tcv	ns
	tRDWT2			1.5tcv	ns
WAIT↓ input time from WR↓	twawt			0.5tcv	ns
WAIT low-level width	twn		(0.5+2n)tcv+10	(2+2n)tcv	ns
Write data setup time	twos		100		ns
Write data hold time	twoн	Load resistor ≥5 kΩ	20		ns
WR low-level width	twaL1		(2.5+2n) toy -20		ns
RD↓ delay time from ASTB↓	TASTRO		0.5tcy-30		ns
WR↓ delay time from ASTB↓	tastwr		1.5tcy-30		ns
ASTB↑ delay time from RD↑ in external fetch	TRDAST		tcv-10	tcy+40	กร
Address hold time from RD1 in external fetch	TRDADH		tcy	tcy+50	ns
Write data output time from RD1	trowo	Voo = 4.5 to 5.5 V	0.5tcy+5	0.5tcv+30	ns
			0.5tcy+15	0.5tcy+90	ns
Write data output time from WR↓	twawd	Vpp = 4.5 to 5.5 V	5	30	ns
			15	90	ns
Address hold time from WR↑	twradh	V _{DD} = 4.5 to 5.5 V	tcy	tcv+60	ns
			toy	tcv+100	ns
RD↑ delay time from WAIT↑	twrnd		0.5tcv	2.5tc++80	ns
WR↑ delay time from WAIT↑	twrwn		0.5tcv	2.5tcy+80	ns

Remarks 1. tcy = Tcy/4

2. n indicates number of waits.

- (3) Serial Interface ($T_A = -40 \text{ to } +85 \text{ °C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)
 - (a) Serial Interface Channel 0
 - (i) 3-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcyi	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK0 high/low-level	ŧкнı	V _{DD} = 4.5 to 5.5 V	tkcv1/2-50			ns
width	tKL1		tkcy1/2-100			ns
SI0 setup time	tsik1	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK0↑)		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI0 hold time	tksii		400			ns
(from SCK0↑)						
SO0 output delay time from SCK0↓	tkso1	C = 100 pF Note			300	ns

Note C is the load capacitance of SCKO and SO0 output line.

(ii) 3-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Test C	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkCY2	4.5 V ≤ V _{DD} ≤ 5	.5 V	800			ns
		2.7 V ≤ V _{DD} < 4	.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2	.7 V	3200			ns
				4800			ns
SCK0 high/low-level	tkH2	4.5 V ≤ V _{DD} ≤ 5	.5 V	400			ns
width	tĸL2	2.7 V ≤ V _{DD} < 4	.5 V	800			ns
		2.0 V ≤ V _{DD} < 2	2.0 V ≤ V _{DD} < 2.7 V				ns
				2400			ns
SI0 setup time	tsik2	V _{DD} = 2.0 to 5.5 V		100			ns
(to SCK0↑)				150			ns
SI0 hold time	tksi2			400			ns
(from SCK0↑)	<u> </u>						
SO0 output delay time	tkso2	C = 100 pF Note	V _{DD} = 2.0 to 5.5 V			300	ns
from SCK0↓						500	ns
SCK0 rise, fall time	t _{R2}	When external	device			160	ns
	t _{F2}	expansion func	tion is used				
		When external	When 16-bit timer			700	ns
		device expansion	output function is				
		function is not	used				
		used	When 16-bit timer			1000	ns
			output function is				
			not used				

Note C is the load capacitance of SO0 output line.

42

■ 6427525 0086006 4T5 ■

(iii) SBI mode (SCK0... Internal clock output)

Parameter	Symbol	Test Co	nditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcys	4.5 V ≤ V _{DD} ≤ 5.5	V	800			ns
		2.0 V ≤ V _{DO} < 4.5	V	3200			ns
				4800	·		ns
SCK0 high/low-level	tкнз	Von = 4.5 to 6.0 V		txcys/2-50			ns
width	tkl3			tксүз/2-150			ns
SB0, SB1 setup time	tsika	4.5 V ≤ V _{DD} ≤ 5.5	s V	100			ns
(to SCK0↑)		2.0 V ≤ V _{DD} < 4.5	s v	300			ns
				400			ns
SB0, SB1 hold time	tksis	-		tксүз/2	-		ns
(from SCK0↑)							
SB0, SB1output delay	tixsos	$R = 1 k\Omega$,	Voo = 4.5 to 5.5 V	0		250	ns
time from SCK0↓		C = 100 pF Note		0		1000	ns
SB0, SB1↓ from SCK0↑	tksB			tксуз			ns
SCK01 from SB0, SB11	tsex			tксүз			ns
SB0, SB1 high-level	tsвн			tксүз			ns
width							
SB0, SB1 low-level	tse.			tксуз			ns
width							

Note R and C are the load resistors and load capacitance of the SB0, SB1 and SCK0 output line.

(iv) SBI mode (SCK0... External clock input)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy4	4.5 V ≤ V _{DD} ≤ 5.5	5 V	800			ns
		2.0 V ≤ V _{DD} < 4.5	5 V	3200			ns
				4800			ns
SCK0 high/low-level	1кн4	4.5 V ≤ V _{DD} ≤ 5.5	5 V	400			ns
width	tkl4	2.0 V ≤ V _{DD} < 4.5	5 V	1600			ns
				2400			ns
SB0, SB1 setup time	tsik4	4.5 V ≤ V _{DD} ≤ 5.5	5 V	100			ns
(to SCK0↑)		2.0 V ≤ V _{DD} < 4.5	5 V	300			ns
				400			ns
SB0, SB1 hold time (from SCK01)	tksi4			tkcv4/2			ns
SB0, SB1 output delay	tkso4	$R = 1 k\Omega$,	V _{DD} = 4.5 to 5.5 V	0		300	ns
time from SCK0↓		C = 100 pF Note		0		1000	ns
SB0, SB1↓ from SCK0↑	tksa			tkcy4			ns
SCK0↓ from SB0, SB1↓	tsek			tkcy4			ns
SB0, SB1 high-level width	tsвн			tkcy4			ns
SB0, SB1 low-level width	tsal			tkcy4			ns
SCK0 rise, fall time	tra tfa	When external d	1			160	ns
			When 16-bit timer output function is used			700	ns
		used	When 16-bit timer output function is not used			1000	ns

Note R and C are the load resistors and load capacitance of the SB0 and SB1 output line.

(v) 2-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Test Co	Test Conditions		TYP.	MAX.	Unit
SCK0 cycle time	tkcy5	$R = 1 k\Omega$,	2.7 V ≤ V _{DO} ≤ 5.5 V	1600			ns
		C = 100 pF Note	$2.0 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	3200			ns
]		4800			ns
SCK0 high-level width	txH5		Voo = 2.7 to 5.5 V	txcys/2-160			ns
		<u> </u>		txcvs/2-190			ns
SCK0 low-level width	tkis		V _{DD} = 4.5 to 5.5 V	txcvs/2-50			ns
		<u>}</u>		tkcy5/2-100			ns
SB0, SB1 setup time	tsik5		4.5 V ≤ V _{DD} ≤ 5.5 V	300			ns
(to SCK0↑)			2.7 V ≤ V∞ < 4.5 V	350			ns
			2.0 V ≤ V ₀₀ < 2.7 V	400			ns
				500			ns
SB0, SB1 hold time	tiksis			600			ns
(from SCK01)		1					
SB0, SB1 output delay	tksos			0		300	ns
time from SCK0↓	1	<u> </u>					

Note R and C are the load resistors and load capacitance of the SCKO, SBO and SB1 output line.

(vi) 2-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксче	2.7 V ≤ V _{DD} ≤ 5.	5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.	7 V	3200			ns
				4800			ns
SCK0 high-level width	tкн6	2.7 V ≤ V _{DD} ≤ 5.5	5 V	650			ns
		2.0 V ≤ V _{DD} < 2.3	7 V	1300			ns
				2100			ns
SCK0 low-level width	t KL6	2.7 V ≤ V _{DD} ≤ 5.5	5 V	800			ns
		2.0 V ≤ V _{DD} < 2.7	7 V	1600			ns
				2400			ns
SB0, SB1 setup time	tsik6	V _{DD} = 2.0 to 5.5	V	100			ns
(to SCK0↑)				150			ns
SB0, SB1 hold time	tksie			tkcys/2			ns
(from SCK01)							
SB0, SB1 output delay	tkso6		4.5 V ≤ V ₀₀ ≤ 5.5 V	0		300	ns
time from SCK0↓		C = 100 pF Note	2.0 V ≤ V _{DD} < 4.5 V	0		500	ns
-				0		800	ns
SCK0 rise, fall time	tas	When external d	levice			160	ns
	tre	expansion functi	on is used			:	
		When external	When 16-bit timer			700	ns
		device expansion	output function is				
		function is not	used				
		used	When 16-bit timer			1000	ns
			output function is		·		
			not used				

Note R and C are the load resistors and load capacitance of the SB0 and SB1 output line.

(b) Serial Interface Channel 1

(i) 3-wire serial I/O mode (SCK1... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy7	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK1 high/low-level	t _{KH7}	Vpo = 4.5 to 5.5 V	tkcy7/2-50			ns
width	t _{KL7}		tkcy7/2-100			ns
SI1 setup time	tsik7	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK1T)		2.7 V ≤ V _{DD} < 4.5 V	150	•		ns
		2.0 V ≤ V _{DO} < 2.7 V	300			กร
			400			ns
SI1 hold time	tksi7		400			ns
(from SCK11)						!
SO1 output delay time	tkso7	C = 100 pF Note			300	ns
from SCK1↓						

Note C is the load capacitance of SCK1 and SO1 output line.

(ii) 3-wire serial I/O mode (SCK1... External clock input)

Parameter	Symbol	Test Cor	nditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	txcva	4.5 V ≤ V _{DD} ≤ 5.5	V	800			ns
		2.7 V ≤ V _{DD} < 4.5	V	1600	!		ns
		2.0 V ≤ V _{DD} < 2.7	v	3200			ns
				4800			ns
SCK1 high/low-level	tкна	4.5 V ≤ Voo ≤ 5.5	V	400			ns
width	tkLe	2.7 V ≤ V _{DD} < 4.5	V	800			ns
) :	2.0 V ≤ V _{DD} < 2.7 V		1600			ns
	:			2400			ns
SI1 setup time	tsike	Voo = 2.0 to 5.5	v	100			ns
(to SCK1T)				150			ns
SI1 hold time	tiksia			400			ns
(from SCK11)	İ						
SO0 output delay time	ticsos	C = 100 pF Note	Vpo = 2.0 to 5.5 V			300	ns
from SCK1↓						500	ns
SCK1 rise, fall time	tras	When external d	levice			160	ns
	tre	expansion functi	on is used				
		When external	When 16-bit timer			700	ns
		device expansion	output function is				
		function is not	used				
	ļ	used	When 16-bit timer			1000	ns
			output function is				
			not used				

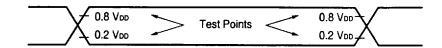
Note C is the load capacitance of SO1 output line.

= 6427525 0086011 862 **=**

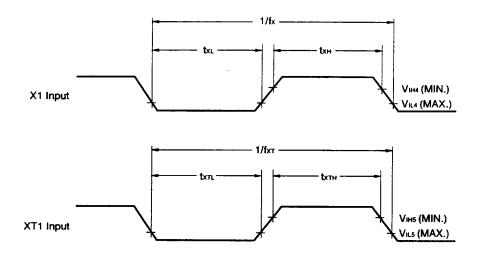
(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксуя	4.5 V ≤ V ₀₀ ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK1 high/low-level	tкнэ	Voo = 4.5 to 5.5 V	tксvэ/2-50			ns
width	tĸL9		txcy9/2-100			ns
SI1 setup time	tsik9	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK1↑)		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DO} < 2.7 V	300			ns
			400			ns
SI1 hold time (from SCK11)	tksie		400			ns
SO1 output delay time from SCK1↓	tks09	C = 100 pF Note			300	ns
STB↑ from SCK1↑	tseo		txcy9/2-100		txcvs/2+100	ns
Strobe signal	tsaw	2.7 V ≤ V _{DD} ≤ 5.5 V	tксvэ-30		txcys+30	ns
high-level width		2.0 V ≤ V _{DD} < 2.7 V	tксуя-60		txcy9+60	ns
			1ксүя-90		tксүэ+90	ns
Busy signal setup time	teys		100			ns
(to busy signal			ŀ			
detection timing)						
Busy signal hold time	tвүн	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns .
(from busy signal		2.7 V ≤ V _{DD} < 4.5 V	150	• • • • • • • • • • • • • • • • • • • •		ns
detection timing)		2.0 V ≤ V _{DD} < 2.7 V	200			ns
			300			ns
SCK1↓ from busy	tses			-	2txcy9	ns
inactive		}			j	

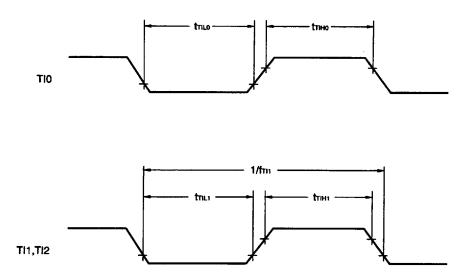
Note C is the load capacitance of SCK1 and SO1 output line.



(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... External clock input)

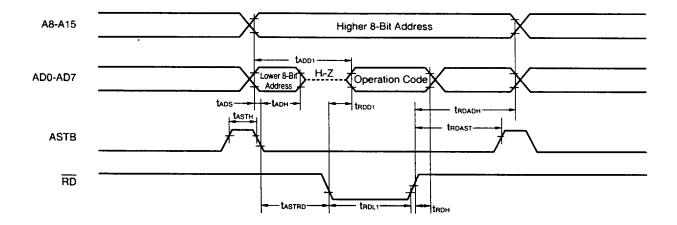

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkCY10	4.5 V ≤ V _{DD} ≤ 5.5	5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5	5 V	1600			ns
	1	$2.0 \text{ V} \leq \text{V}_{00} < 2.7$	7 V	3200			ns
				4800			ns
SCK1 high/low-level	t кн10,	4.5 V ≤ V _{DO} ≤ 5.5	5 V	400			ns
width	tKL10	2.7 V ≤ V _{DD} < 4.5	5 V	800			ns
		2.0 V ≤ V _{DD} < 2.7	7 V	1600			ns
				2400			ns
SI1 setup time	tsik10	$V_{00} = 2.0 \text{ to } 5.5$	V	100			ns
(to SCK1↑)				150			ns
SI1 hold time (from SCK1↑)	tksno			400			ns
SO1 output delay time	tkso10	C = 100 pF Note	V _{DD} = 2.0 to 5.5 V			300	ns
from SCK1↓						500	ns
SCK1 rise, fall time	tR10, tF10	When external d	levice expansion			160	ns
		When external d	levice expansion sed			1000	ns

Note C is the load capacitance of the SO1 output line.

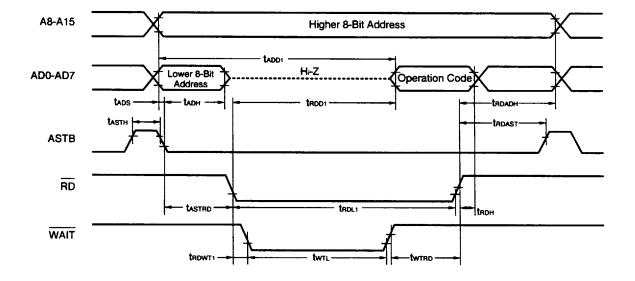

AC Timing Test Point (Excluding X1, XT1 Input)

Clock Timing

TI Timing

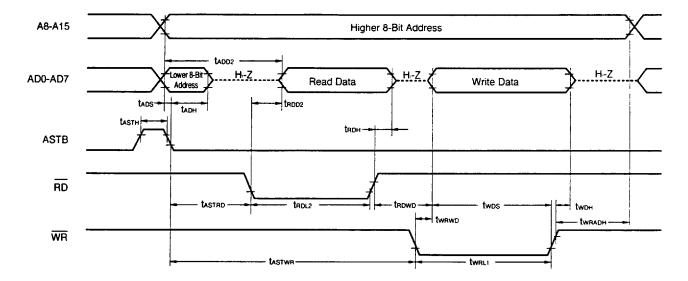

50

■ 6427525 0086014 571 **■**

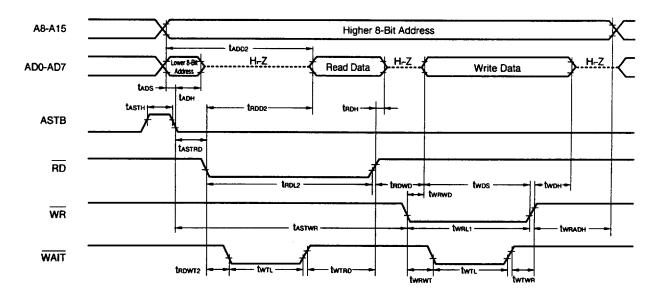


Read/Write Operation

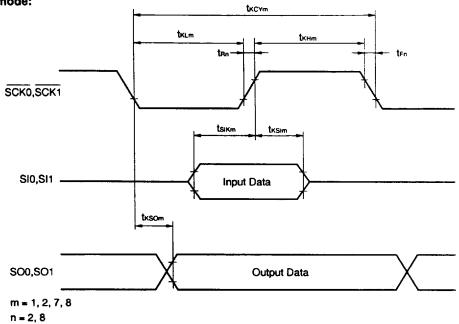
External fetch (No wait):

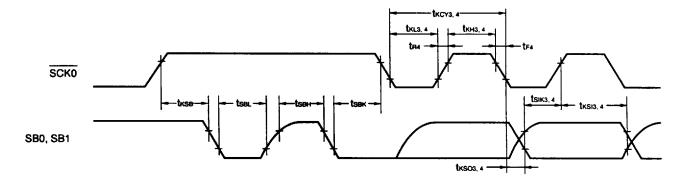


External fetch (Wait insertion):

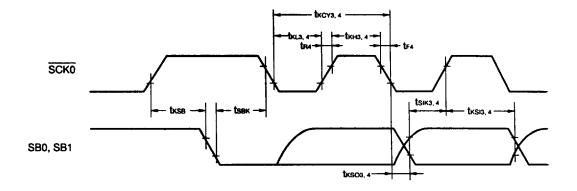


External data access (No wait):

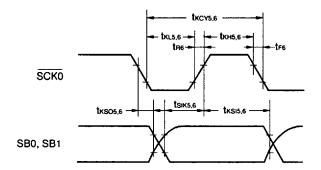

External data access (Wait insertion):


52

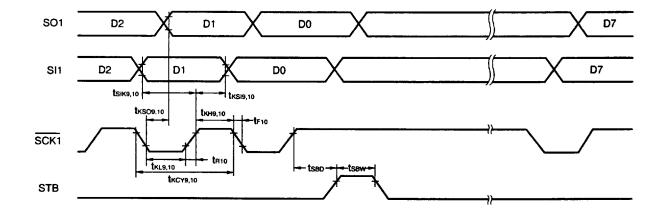
■ 6427525 0086016 344 **■**


Serial Transfer Timing 3-wire serial I/O mode:

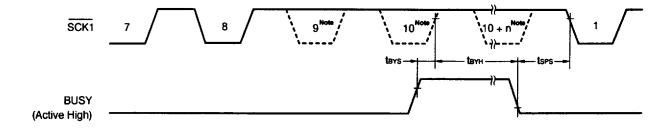
SBI mode (Bus release signal transfer):



SBI Mode (command signal transfer):



■ 6427525 0086017 280 **■**


2-wire serial I/O mode:

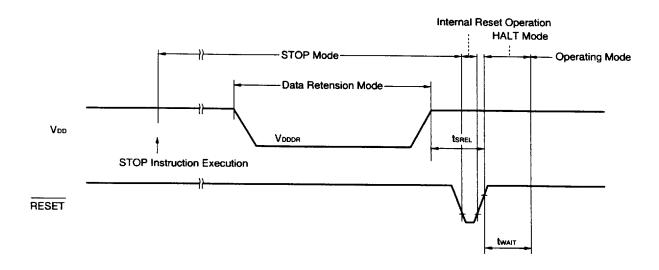
3-wire serial I/O mode with automatic transmit/receive function:

3-wire serial I/O mode with automatic transmit/receive function (busy processing):

Note The signal is not actually driven low here; it is shown as such to indicate the timing.

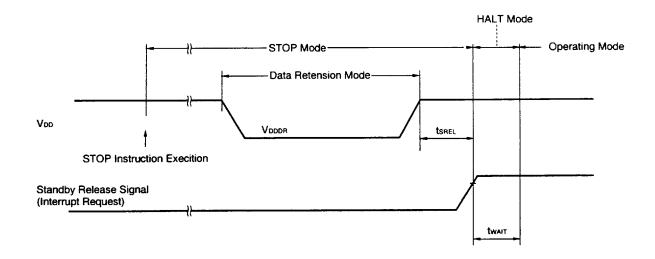
A/D converter characteristics ($T_A = -40 \text{ to } +85 \text{ °C}$, $AV_{DD} = V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$, $AV_{SS} = V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error Note		2.7 V ≤ AVREF ≤ AVDD			0.6	%
		1.8 V ≤ AVREF ≤ 2.7 V			1.4	%
Conversion time	tconv	2.0 V ≤ AVDD < 5.5 V	19.1		200	μS
		1.8 V ≤ AV _{DD} < 2.0 V	38.2		200	μs
Sampling time	t samp		24/fx			μS
Analog input voltage	VIAN		AVss		AVREF	V
Reference voltage	AVREF		1.8		AVDD	V
AVREF-AVss resistance	RAIREF		4	14	·	kΩ

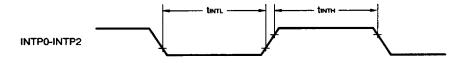

Note Overall error excluding quantization error (±1/2 LSB). It is indicated as a ratio to the full-scale value.

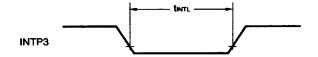
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($T_A = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply	VDDDR		1.8		5.5	V
voltage					0.0	
Data retention supply	IDDDR	VDDDR = 1.8 V		0.1	10	μА
current		Subsystem clock stop and feed-				~
	i	back resister disconnected				
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		218/fx		ms
wait time		Release by interrupt		Note		ms

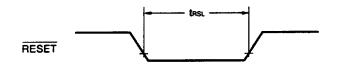

Note In combination with bit 0 to bit 2 (OSTS0 to OSTS2) of oscillation stabilization time select register, selection of 2¹³/ fx and 2¹⁵/fx to 2¹⁸/fx is possible.

Data Retention Timing (STOP Mode Release by RESET)



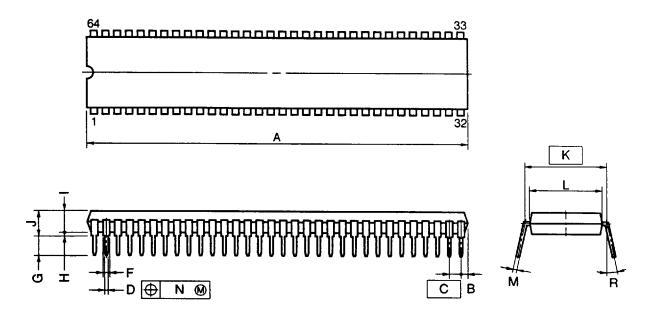

■ 6427525 DO86019 **D**53 **■**

Data Retention Timing (Standby Release Signal : STOP Mode Release by Interrupt Signal)



Interrupt Input Timing

RESET Input Timing



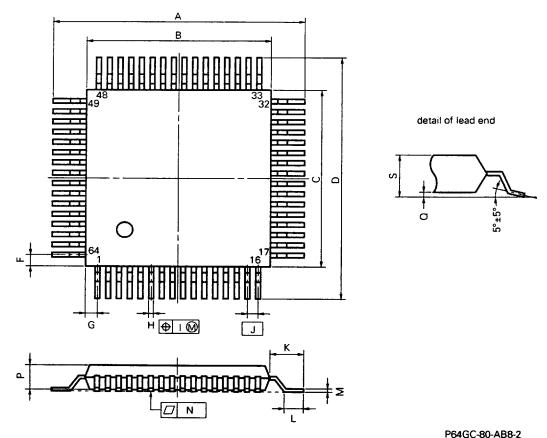
56

= 6427525 0086020 875 **=**

12. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE


- Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

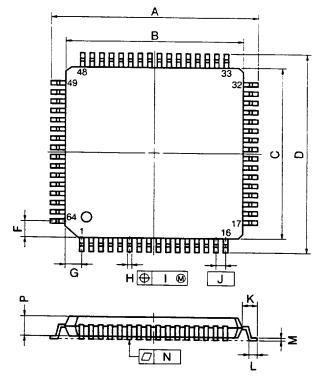
ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	0.020+0.004
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
1	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	0.25 ^{+0.10} -0.05	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0~15°	0~15°

P64C-70-750A,C-1

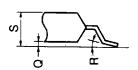
Remark Dimensions and materials of ES products are the same as those of mass-production products.

64 PIN PLASTIC QFP (□14)

NOTE
Each lead centerline is located within 0.15
mm (0.006 inch) of its true position (T.P.) at
maximum material condition.


		P04GC-80-AD8-2
ITEM	MILLIMETERS	INCHES
Α	17.6±0.4	0.693±0.016
В	14.0±0.2	0.551±0.009
С	14.0±0.2	0.551-0.009
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
H	0.35±0.10	0.014+0.004
_	0.15	0.006
7	0.8 (T.P.)	0.031 (T.P.)
K	1.8±0.2	0.071±0.008
L	0.8±0.2	0.031+0.009
М	0.15 ^{+0.10}	0.006±0.004
N	0.10	0.004
Р	. 2.55	0.100
Q	0.1±0.1	0.004±0.004
s	2.85 MAX.	0.112 MAX.

Remark Dimensions and materials of ES products are the same as those of mass-production products.


58

■ 6427525 0086022 648 ■

64 PIN PLASTIC LQFP (□12)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	14.8±0.4	0.583±0.016
В	12.0±0.2	$0.472^{+0.009}_{-0.008}$
С	12.0±0.2	0.472+0.009
D	14.8±0.4	0.583±0.016
F	1.125	0.044
G	1.125	0.044
н	0.30±0.10	0.012+0.004
H	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.4±0.2	0.055±0.008
L	0.6±0.2	$0.024^{+0.008}_{-0.009}$
М	0.15 ^{+0.10} -0.05	0.006+0.004
N	0.10	0.004
Р	1.4	0.055
Q	0.125±0.075	0.005±0.003
R	5°±5°	5°±5°
S	1.7 MAX.	0.067 MAX.

P64GK-65-8A8-1

Remark Dimensions and materials of ES products are the same as those of mass-production products.

13. RECOMMENDED SOLDERING CONDITIONS

The μ PD78011F/78012F/78013F/78014F/78015F/78016F should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact our salespersonnel.

Table 14-1. Surface Mounting Type Soldering Conditions (1/2)

(1) μ PD78011HGC-xxx-AB8 : 64-Pin Plastic QFP (14 × 14 mm) μ PD78012HGC-xxx-AB8 : 64-Pin Plastic QFP (14 × 14 mm) μ PD78013HGC-xxx-AB8 : 64-Pin Plastic QFP (14 × 14 mm) μ PD78014HGC-xxx-AB8 : 64-Pin Plastic QFP (14 × 14 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or above), Number of times: Thrice max.	IR35-00-3
VPS	Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or above), Number of times: Thrice max.	VP15-00-3
Wave soldering	Solder bath temperature: 260 °C max. Duration: 10 sec. max. Number of times: Once Preliminary heat temperature: 120 °C max. (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300 °C max., Duration: 3 sec. max. (per device side)	_

Caution Use more than one soldering method should be avoided (except in the case of partial heating).

Table 14-1. Surface Mounting Type Soldering Conditions (2/2)

(2) μ PD78011HGK-xxx-8A8: 64-Pin Plastic LQFP (12 × 12 mm) μ PD78012HGK-xxx-8A8: 64-Pin Plastic LQFP (12 × 12 mm) μ PD78013HGK-xxx-8A8: 64-Pin Plastic LQFP (12 × 12 mm) μ PD78014HGK-xxx-8A8: 64-Pin Plastic LQFP (12 × 12 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or above), Number of times: Twice max., Number of days: 7 days Note (after that, 125 °C prebaking for 10 hours is necessary.) < Points to note > Products packed in packing materials other than heat-resistant trays (such as magazines, taping, and non-heat resistance tray) cannot be baked while packed.	IR35-107-2
VPS	Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or above), Number of times: Twice max., Number of days: 7 days Note (after that, 125 °C prebaking for 10 hours is necessary.) < Points to note > Products packed in packing materials other than heat-resistant trays (such as magazines, taping, and non-heat resistance tray) cannot be baked while packed.	VP15-107-2
Wave soldering	Solder bath temperature: 260 °C max. Duration: 10 sec. max. Number of times: Once, Preliminary heat temperature: 120 °C max. (Package surface temperature), Number of days: 7 days Note (after that, 125 °C prebaking for 10 hours is necessary.)	WS60-107-1
Partial heating	Pin temperature: 300 °C max., Duration: 3 sec. max. (per device side)	_

Note The number of days the device can be stored at 25 °C, 65% RH MAX. after the dry pack has been opend.

Caution Use more than one soldering method should be avoided (except in the case of partial heating).

Table 14-2. Insertion Type Soldering Conditions

 μ PD78011HCW-xxx: 64-Pin Plastic Shrink DIP (750 mil) μ PD78012HCW-xxx: 64-Pin Plastic Shrink DIP (750 mil) μ PD78013HCW-xxx: 64-Pin Plastic Shrink DIP (750 mil) μ PD78014HCW-xxx: 64-Pin Plastic Shrink DIP (750 mil)

Soldering Method	Soldering Conditions
Wave soldering (pin only)	Solder bath temperature: 260°C max., Duration: 10 sec. max.
Partial heating	Pin temperature: 300°C max., Duration: 3 sec. max. (per pin)

Caution Wave soldering is only for the lead part in order that jet solder can not contact with the chip directly.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for the development of systems using the μ PD78014H subseries.

Language processor software

RA78K/0 Notes 1, 2, 3, 4	Assembler package common to 78K/0 series
CC78K0 Notes 1, 2, 3, 4	C compiler package common to 78K/0 series
DF78014 Notes 1, 2, 3, 4, 6	Device file common to μPD78014 subseries
CC78K0-L Notes 1, 2, 3, 4	C compiler library source file common to 78K/0 series

Debugging tools

IE-78000-R	In-circuit emulator common to 78K/0 series
IE-78000R-A Notes 8	In-circuit emulator common to 78K/0 series (for integrated debugger)
IE-78000-R-BK	Break board common to 78K/0 series
IE-78014-R-EM-A	Emulation board common to μ PD78018F and 78018FY subseries (V _{DD} = 3.0 to 6.0 V)
EP-78240CW-R EP-78240GK-R	Emulation probe common to μPD78244 subseries
EP-78012GK-R	Emulation probe common to μPD78018F subseries
EV-9200GC-64	Socket mounted on printed wiring board of target system created for 64-pin plastic QFP (GC-AB8 type)
TGK-064SBW	Adapter mounted on printed wiring board of target system created for 64-pin plastic QFP (GK-8A8 type). This is a product of TOKYO ELETECH Corp. Consult NEC when purchasing this product.
SM78K0 Notes 5, 6, 7 ID78K0 Notes 4, 5, 6, 7	System emulator common to 78K/0 series Integrated debugger common to 78K/0 series
SD78K/0 Notes 1, 2	Screen debugger for IE-78000-R
DF78014 Notes 1, 2, 3, 4, 5, 6, 7	Device file common to μPD78014 subseries

Real-Time OS

RX78K/0 Notes 1, 2	Real-time OS for 78K/0 series
MX78K0 Notes 1, 2	OS for 78K/0 series

Fuzzy Inference Devleopment Support System

FE9000 Note 1/FE9200 Note 6	Fuzzy knowledge data creation tool
FT9080 Note 1/FT9085 Note 2	Translator
FI78K0 Notes 1, 2	Fuzzy inference module
FD78K0 Notes 1, 2	Fuzzy inference debugger

- Notes 1. PC-9800 series (MS-DOS™) based
 - 2. IBM PC/AT™ and compatible machine (PC DOS™/IBM DOS™/MS-DOS) based
 - 3. HP9000 series 300TM (HP-UXTM) based
 - 4. HP9000 series 700™ (HP-UX) based, SPARCstation™ (SunOS™) based, EWS-4800 series (EWS-UX/V) based
 - 5. PC-9800 series (MS-DOS + Windows™) based
 - 6. IBM PC/AT and compatible machine (PC DOS/IBM DOS/MS-DOS + Windows) based
 - 7. NEWSTM (NEWS-OSTM) based
 - 8. Under development.
- Remarks 1. For development tools manufactured by a third party, refer to the 78K/0 Series Selection Guide (U11126E).
 - 2. RA78K/0, CC78K/0, SM78K0, ID78K0, SD78K/0, and RX78K/0 are used in combination with DF78014.

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name	Docum	Document No.	
Document Name	Japanese	English	
μPD78014H Subseries User's Manual	Planned to publish	Planned to publish	
μPD78014 Data Sheet	U11898J	This manual	
78K/0 Series User's Manual - Instruction	IEU-849	IEU-1372	
78K/0 Series Instruction List	U10903J	_	
78K/0 Series Instruction Set	U10904J	_	
μPD78014H Subseries Special Function Register List	Planned to publish	_	

Development Tools Documents (User's Manual)

Document Name		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocess	or	EEU-817	EEU-1402
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K/0 C Compiler Application Note	Programming Know-how	EEA-618	EEA-1208
CC78K Series Library Source File		EEU-777	_
IE-78000-R		EEU-810	U11376E
IE-78000-R-A		U10057J	U10057E
IE-78000-R-BK		EEU-867	EEU-1427
IE-78014-R-EM-A		EEU-962	U10418E
EP-78240		EEU-986	EEU-1513
EP-78012GK-R		EEU-5012	EEU-1538
SM78K0 System Simulator Windows Based	Reference	U10181J	U10181E
SM78K Series System Simulator	External Components User Open	U10092J	U10092E
	Interface		
ID78K0 Integrated Debugger EWS Based	Reference	U11151J	_
ID78K0 Integrated Debugger PC Based	Reference	U11539J	_
ID78K0 Integrated Debugger Windows Based	Guide	U11649J	_
SD78K/0 Screen Debugger	Introduction	EEU-852	_
PC-9800 Series (MS-DOS) Based	Reference	EEU-816	_
SD78K/0 Screen Deb	Introduction	EEU-5024	EEU-1414
IBM PC/AT (PC DOS) Based	Reference	EEU-993	EEU-1413

Caution The contents of the above related documents are subject to change without notice. The latest documents should be used for design, etc.

64

■ 6427525 0086028 066 **■**

Embedded Software Documents (User's Manual)

Document Name		Document No.	
		Japanese	English
78K/0 Series Real-Time OS	Fundamental	U11537J	_
	Installation	U11536J	_
	Technical	U11538J	_
78K/0 Series OS MX78K0	Fundamental	EEU-5010	_
Fuzzy Knowledge Data Creation Tool		EEU-829	EEU-1438
78K/0, 78K/II, 87AD Series		EEU-862	EEU-1444
Fuzzy Inference Development Support	System - Translator		
78K/0 Series Fuzzy Inference Development Suport System -		EEU-858	EEU-1441
Fuzzy Inference Module			
78K/0 Series Fuzzy Inference Development Support System -		EEU-921	EEU-1458
Fuzzy Inference Debugger			

Other Documents

Document Name	Document No.	
Document Name	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Device	C11531J	IEI-1209
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	
Guide to Quality Assurance for Semiconductor Device	MEI-603	MEI-1202
Guide for Products Related to Micro-Computer: Other Companies	U11416J	_

Caution The contents of the above related documents are subject to change without notice. The latest documents should be used for design, etc.